Open KB Seminar 29/4/2024

Latent variables, measurement models and bibliometric data

Peter van den Besselaar

Vrije Universiteit Amsterdam & DZHW Berlin

Latent and manifest variables

- Does political orientation influence opinion about international science cooperation?
- Measuring political orientation:
 - Cannot be observed directly => latent variable
 - Need for observables related to political orientation => manifest variables
 - E.g., through a survey
- Asking "what did you vote in the previous election" is not enough.
 - Floating voters, faulty memory, voting is only one aspect of political orientation

Measuring latent variables

- Researchers use a set of items (survey question) related to political orientation to cover the concept correctly (validity)
 - On inequality, taxation, abortion, freedom of the press, gender issues and so on
- These are observable through a survey: manifest variables
- Latent variable 'political orientation' causes the scores on the observable items

The score on the latent variable

- Is the latent variable one dimension? => factor analysis
 - In case of political orientation, one finds generally two dimensions
 - Socio-economic: left-right
 - Cultural: liberal-conservative
- Is it still one scale or are it two scales: scale analysis
 - Cronbach's Alpha
- Score:
 - Sum of scores on the items
 - Regression on the factor loadings
 - SEM: estimating simultaneously the structural model and the measurement model

Bibliometric indicators

- Bibliometric indicators are implicitly used as direct measures of latent variables
- Nr of publications as quality but later abandoned
- Nr of citations as quality but later changed into impact
- Derivates from these as ????
- But in many studies, these indicators remain used as proxies for performance and implicitly for quality

The empirical problem

- Explaining e.g., gender bias in grant success needs merit or performance indicators
 - (Bias is a deviation from merit)
- For some panels, P10 is a significant predictor, for others P5, or Frac P
 - This is not a behavioral issue, as these are not known by the panelists.
 - Using all of course does not work (=> Multicollinearity)
 - And defining merit in three ways without a good reason is neither a solution

Model

Operationalization of contributions to science:

- Every bibliometric operationalization works only in some but not in other panels.
- Ad hoc choice to support the hypothesis in the different panels.

Unclear definition (validity problem) and reliability problem.

Learning from the social and behavioral sciences

- Distinguishing between the latent variables and manifest variables
- List of (bibliometric) items that can be assumed as valid operationalization of the relevant concepts (eg scholarly quality)
 - Excluding for the moment other relevant items (and data)
- Using those for a reliable measurement

Some properties of the indicators

- Many indicators
- Indicators correlate (high) but not perfect: all cover a part of the concept
- Holds also for the differences between datasets P_{scopus} vs P_{WoS}

Define and operationalize quality

- Scientific quality of a researcher:
 - The ability to contribute to science, given age and academic age:
 - Higher quality => more contributions
- Items that measure contributions:
 - Number of contributions to science
 - Impact of those contributions
 - Number of high impact contributions
 - Share of top contributions
 - Access with the contributions to high prestige journals
 - Etc.
 - Independence (own contributions)
 - Broad versus narrow coverage of research topics
 - Age
 - Academic age

Measurement models: several options

- Average of the (standardized) relevant items
- Factor analysis of the items and reliability analysis
- Structural equations: simultaneous estimates of laten variables and the main model (SEM)

Example 1: Contribution to science (quality)

Data

- All Scival bibliometric indicators
- Factor analysis -> latent dimensions of quality
- Reliability analysis of the scales
- Stability analysis
- Items to be validated in interviews with committee members by interviews

The Scival indicators

	Abbreviation	Indicator
1	Р	Total publications
2	P frac	Total publications, fractional counting
3	С	Citations
4	C frac	Citations, fractional counting
5	C/P	Citations per publication
6	FWCI Sum	Sum field weighted citation impact
7	FWCI Average	Average field weighted citation impact
8	P10%	Number top 10% cited papers
9	P10% FN frac	Number top 10% cited papers, field normalized, fractional counted
10	P10% share	Share top 10% cited papers
11	PP10%	Share top 10% cited papers
12	PP10% FN	Share top 10% cited papers, field normalized,
13	PP10% FN frac	Share top 10% cited papers, field normalized, fractional counted
14	SJR	SJR
15	SNIP	Average SNIP
16	Citescore	Citescore

Three factors

• Total impact

- size dependent
- Shows that number and impact of contributions are one dimension
- C-alpha: 0.914

Reputation

• C-alpha: 0.873

• Relative impact

- size independent
- C-alpha: 0.853
- N: about 2600

April 29, 2024

Pattern matrix	Total impact	Journal impact	Relative impact
P*	0.994		
P frac	0.952		0.376
P10%	0.844		
P10% FN	0.837		
FWCI sum	0.815		
P10% FN frac	0.773		
C frac	0.747		
С	0.747		
SJR		0.951	
SNIP average		0.928	
Citescore		0.916	
PP10% FN			-0.839
FWCI average			-0.828
P10% sgare			-0.706
C/P			-0.697

Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser Normalization Rotation converged in 9 iterations. * all items are panel-based z-scores |loadings| < .30 not shown

Smaller set of indicators

Second case

N = about 2600

C-alphas > 0.80

 Table 2: The bibliometric performance indicators.

Pattern matrix	Relative impact (1)	Total impact (2)	Journal impact (3)
PP10% FN	0.980		
PP10% FN frac	0.950		
FWCI average	0.719		
PP10%	0.670		
C/P	0.593		
P frac		0.919	
P10% FN frac		0.801	
C frac		0.709	
SJR			0.942
SNIP average			0.703

Extraction Method: Principal Axis Factoring.

Rotation Method: Oblimin with Kaiser Normalization.

All items are panel-based z-scores

|loadings| < .30 not shown

Use case		В	SE	Wald	df	Significance	Exp(B)	95% CI for Exp(<i>B</i>)	
								Lower	Upper
	Women vs. men	- 0.858	0.246	12.161	1	< .001	0.424	0.262	0.687
	Faculty			29.196	5	< .001			
	Faculty(1)	- 0.763	0.272	7.859	1	0.005	0.466	0.274	0.795
	Faculty(2)	- 1.733	0.411	17.801	1	< .001	0.177	0.079	0.395
en Besselaar & Mom	Faculty(3)	- 0.072	0.289	0.061	1	0.805	0.931	0.528	1.641
, is there gender bias	Faculty(4)	- 2.324	0.771	9.081	1	0.003	0.098	0.022	0.444
rding cum laude for	Faculty(5)	- 1.08	0.765	1.993	1	0.158	0.34	0.076	1.521
id thesis.	PhD year	- 0.045	0.026	3.036	1	0.081	0.956	0.91	1.006
UTTELITES	Relative impact	- 0.096	0.122	0.627	1	0.428	0.908	0.715	1.153
	Total impact	0.609	0.084	52.338	1	< .001	1.839	1.559	2.169
	Journal impact	0.527	0.106	24.898	1	< .001	1.694	1.377	2.084
	Independence	- 0.011	0.004	6.855	1	0.009	0.989	0.981	0.997
	Team size	0.03	0.133	0.051	1	0.822	1.03	0.794	1.338
	Constant	- 2.226	0.202	121.235	1	< .001	0.108		

 Table 9 CL by gender, faculty and quality (PhD period)

Van den Besselaar & Mom (2014), Is there gender bias In awarding cum laude for The PhD thesis. **Scientometrics**

> Logistic regression; all PhD students in the selected faculties; impact indicators calculated over the t - 3 to t + 3 period

Example 2: Independence

- Independency is important in the mid-career: becoming independent from the early career (PhD) environment
- An independent researcher has developed independence from the early career environment (supervisors)
- Example:
 - ERC defines independence as there should be at least one paper without the supervisor.
 - Why would this be a valid and reliable indicator?
 - Again: independence as a manifest, not a latent variable

Aspects of independence

- An own network, different from the early career environment (1)
- An own oeuvre => papers without the former supervisors (2)
- An own research agenda => topics where the supervisors have not been active (3)

Van den Besselaar & Sandstrom (2019) *PLoS ONE* Moeller, Van den Besselaar, Mom (2022) *Proceedings STI*

Operationalization

- In ego-network of researcher should the former supervisors not be central:
 - Low eigenvector centrality (EC)
 - High clustering coefficient (CC)
- Researcher should have publications not co-authored with former supervisors
 - Share of own publications among all publications of researcher (SOP)
- Researcher should be active in other fields than the former supervisor
 - Share of own (Scopus) themes (SOT)
- Score could be: Independence = average((1-EC) + CC + SOP + SOT)

Example 3: Cognitive mobility

- Movement between research topics
 - Nr of new topics over the career (1)
 - Distribution of papers over topics (2)
 - New topics can have a low of high number of papers
 - Incidental work on a topic, or substantial
 - Distance between topics: within one or within more discipline (3)
- Cognitive mobility as average of those three scores

Mom, Moeller, Van den Besselaar, Proceedings ISSI 2024

Lessons learned

- Using indicators as items leads to more valid and reliable indicators
 - Tested it in a variety of studies, with similar results
- Substantially:
 - Number and impact of contributions are <u>one</u> quality dimension
 - –> versus the quantity-quality discussion
 - Relative impact did not work: Very different groups have high relative impact:
 - Top and bottom performers!

Conclusions

- Many variables we are interested in are latent
- Bibliometric (and other) data can be used as items to measure the latent variables (if well defined)
- We showed a few examples, and applying those suggests that this is a fruitful approach
- But this is a developing research agenda

Thanks for your attention

Questions, Comments?

