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ABSTRACT
Determining address string equality is crucial to attribute publi-
cations or identify authors’ affiliations – important prerequisites
for higher-level research questions. While data sets for institution
resolution are no smaller than in other large-scale scholarly resolu-
tion tasks like author disambiguation, the hierarchical nature of the
institutions themselves leads to additional difficulties. This ’true’
hierarchy coalesces with the hierarchy of partial and ambiguous
representations. In this project, we explore the opportunities of
ordering parsed address strings into the subset relation and per-
forming iterative block merging subsequently. We test our model in
theWeb of Science – one of the largest collections of scientific meta-
data – and evaluate its performance against a large gold standard
over its German subset. The results underline the vagueness of the
presented task, flaws of the gold annotation but also the potential
of our approach to answer specific questions concerning identity
or equality of different affiliation strings.

1 INTRODUCTION
Institution resolution concerns the search for indicators of identity
or equality and is a crucial task in semi-curated digital libraries
where a wide range of inputs leads to a noisy mapping between
institutions and their address strings. It is a prerequisite for various
tasks, in particular determining researcher mobility or measuring
institution-specific performance indicators. The heterogeneity of
affiliation data leads to problems like (a) missing information, (b)
deviations and variations and (c) temporal snapshots. For example:
(a) a researchers department is inst:GESIS,dep:WTS, reported is only
inst:GESIS; (b) the institute is GESIS Leibniz Institute but on one
record it reads GESIS Leibnitz Institute; (c) it used to be ZUMA, but
now it runs under GESIS. More formally, we distinguish necessary
and sufficient conditions for equality, e.g. (i) same email domain is
sufficient for equality, but not necessary (one can have multiple do-
mains), (ii) disregarding name changes, university is necessary, but
not sufficient (there are different institutions under one university),
(iii) similar terms, are neither sufficient, nor necessary, but never-
theless a strong indicator. Sufficient conditions provide evidence.
Necessary conditions tell us what must be separated.

Avoiding quadratic complexity. In large collections, scaling is crit-
ical. In this context, blocking refers to prior separation of mentions
into partitions based on a small, distinctive set of features, assum-
ing that whatever falls into separate blocks is sufficiently unlikely
to co-refer – and direct comparison can be avoided. The blocking
procedure itself must avoid pairwise comparison and therefore
implements a bucket sorting algorithm.

The transitivity problem. Sufficient conditions define a transitive
relation (if a and b are equal, and b and c are equal, then so are a and
c), while necessary conditions do not [11]. The difficulty is that both
blocks (separating what must be apart) and clusters (grouping what

must be together) are ultimately disjoint partitions, and therefore
equivalence classes of two equivalence relations – which are transi-
tive by definition. Blocking tries to separate mentions with contra-
dictory surface forms, (e.g. different universities), but matching is
not transitive: inst:GESIS,dep:WTS matches with inst:GESIS, which
matches with inst:GESIS,dep:CSS, while GESIS,WTS and GESIS,CSS
are contradictory. This can be modelled with the help of the subset-
relation, which is transitive, but not symmetric.

A lattice of blocking keys. The subset relation defines a (semi-)
lattice over mentions based on sets of blocking properties of their
representations. For example, here it holds GESIS→ GESIS,WTS
and GESIS → GESIS,CSS, while GESIS,WTS ↮ GESIS,CSS. The
symmetric transitive closure of this relation (the respective graph’s
weakly connected components) can be used to obtain an equiva-
lence relation which creates a blocking that separates no matching
names but may group contradictory ones. If these blocks get too
large due to high connectivity in the underlying relation, the latter
must be modified before taking the closure. Most institution resolu-
tion approaches implicitly do so, e.g. when normalizing to top-level
only by removing all edges to more specific representations.

Gradual improvement. So far, it was unclear which level of detail
to consider to determine equality. One solution was proposed in
[1] and takes the entropy of the frequencies of a mention’s direct
specifications into account. A better fit is progressive resolution,
where the notion of a fixed blocking relation is abandoned. Instead,
more entity pairs are compared in each iteration.

Hierarchical modeling. Besides reducing complexity, blocking
offers the opportunity to model the relationship between different
surface forms in a logical and visually accessible way. It unveils
hierarchies present in the actual institutions as well as in their frag-
mented representations. First, adequate blocking keys and means to
extract them are identified. Then, the lattice is build and sparsified
by removing inadequate or irrelevant types. By instantiating the
types in the lattice with observed mentions, the semilattice is built
which includes different representations, their entailment and the
estimated entailment likelihood for progressive block merging.

Lattice-based institution resolution. In this work, we present a
method for large-scale hierarchical institution resolution. It builds
on the blocking relation and combines it with a partition hierar-
chy to exploit both the underlying graph structure and additional
frequency information. In section 2, we explain our formal model.
In sections 3, 4 and 5, we describe how we apply it to institutions
by parsing address strings into representations, ordering them into
a semilattice, separating them by minimal elements and finally
obtaining different levels of equality. In section 6, we explain our
experiments as well as their results. In section 8, we discuss relevant
literature. Finally, we describe the output computed in the project
and discuss and conclude our findings.
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Figure 1: The semilattice for Institute for Nuclear Waste Disposal – build and colored using information from the test data.

2 THE GENERAL MODEL
The overall goal is to minimize the number of non-coreferring
address pairs in the same block (high bPrec) and the number of
coreferring pairs in different blocks (high bRec). For institutions
however, a single level of coreference is not sufficient as they have
a hierarchical structure. For example, two addresses might corefer
on the university level, but belong to different chairs. We strive
to model such hierarchies in our approach and in addition we can
iteratively merge the most similar representations with the goal of
simplifying the structure and resolving synonyms.

Representation hierarchies. In our model, each address mention
x is represented by a set Rx of key-value pairs (a,v) ∈ A ×V :

Rx = {(a,v) | x has value v for key a}

e.g. {(INST ,Disposal), (INST ,Nucl), (INST ,Waste)} in Figure 1.
For each representation Rx , one can obtain its type

TRx = {a | x has some value for key a}

by considering only the keys, i.e. {INST } or {INST , INST , INST }.
The subset relation < defines a lattice over the power set P(A) –
that is over types. For example {INST , INST , INST } is a subset/-
generalization of {INST , INST , INST ,CTR}. We can encode world
knowledge by removing certain types from this lattice (e.g. no chair
without university) [1]. We say a representation is licenced by the
lattice, if its type is in the latter. The subset relation also defines a
directed acyclic graph over the representations Rx and their licensed
generalizations. For example, INST:{Disposal,Nuclear,Waste} is a gen-
eralization of INST:{Disposal,Kit,Nuclear,Waste}. We can view this
semilattice as a graph with one node for each representation Rx .
Each node ’contains’ all the institution mentions x1, . . . , xk with
this representation. Edges implement the covering relation ⋖ as
known from lattice theory. Each node holds two values: (1) the
observation-count #, giving the number of times the representation
has been observed and (2) the carry-count #̆, giving the number of
times one of its specifications has been observed. Using # and #̆, we
define conditional probabilities as edge weights:

p(Rx |Rx ′) =
#̆(Rx )
#̆(Rx ′)

,p(Rx |Rx ) =
#(Rx )
#̆(Rx )

so that the probability of Rx given itself is 1 iff Rx has no observed
specifications. As a node’s carry count is the sum of all its spec-
ifications’ (and it’s own) observation-count, #̆(Rx ) ≥ #(Rx ), and
#̆(Rx ′) ≥ #̆(Rx ) for any Rx > Rx ′ .

Logical reasoning. Our model uses both deductive and inductive
reasoning. Deductive, top-down reasoning is implicit in the notion
of the carry-count: if we observe an institution mention with a
certain representation, we know that we also observe all its gener-
alizations and we add its observation count as carry-count to all of
them. Edges are strong if the origin is seen often as a generaliza-
tion of the target (not so much on its own or as generalization of
other nodes). Inductive, bottom-up reasoning models uncertainty
about the completeness of a representation. If we observe a mention
with a certain representation, we can guess that this representa-
tion is, with some probability, only an observed generalization of
a more accurate ’true’ representation: we hypothesize missing in-
formation. This is one of the two central operations in our model:
discounting. Here, we guess that a certain percentage δ of a node’s
observation-count should be credited to more specific nodes. We
use the straightforward rule that a node’s discount mass δ · #(Rx ′)
is distributed among its direct specifications (its covers) Rx ⋗ Rx ′

proportional to the current probability distribution:

∆Rx←Rx ′ = δ · #(Rx ′) ·
p(Rx |Rx ′)∑

Rx ′′⋗Rx ′ p(Rx ′′ |Rx ′)

As each node Rx ′ with nonzero observation has a nonzero proba-
bility p(Rx ′ |Rx ′), and therefore also distributes observation mass
to itself, we can choose δ = 1. Until the end of the turn, a node’s
gains ∆Rx←Rx ′ are ’buffered in the edge’ and only then added to
its observation-count to prevent it from being propagated further.

Collapsing structures. In each iteration, we can merge all nodes/
blocks Rx ,Rx ′ that are connected by edges with weights/condi-
tionals p(Rx |Rx ′) above a threshold tb . This is the second central
operation of our blocking method and the final purpose of discount-
ing. An example is shown in Figure 4, where after some iterations,
a number of strongly related representations for the L3S have been
combined. Merging two nodes, the result contains the mentions
of both. The observation counts are added and the carry count
is updated w.r.t. the new set of specifications. At the end of each
iteration, we perform discounting as described above. As a result,
the observation mass gradually moves up the lattice. A welcome
side-effect is that edge weights in the entire graph grow – although
more dominantly in some edges. Therefore, the next iteration is
likely to find edges exceeding tb that had not done so before. As it
can happen that all observation mass ends up in the most specific
nodes before all nodes are merged into a single large block, we also
lower tb by a small amount.
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Figure 2: The semilattice for Institute for Nuclear Waste Disposal – built with additional city information from the WoS.

3 ADDRESS PARSING
In this section, we give details about the information extraction
process that we apply to the affiliation/address strings available for
most authors in the Web of Science. Our solution is specific to this
collection, as the addresses have been entered and normalized in
a certain way that is – to some extend – homogeneous. This is a
parsing problem, as the task is to assign labels to all components
of the address, identifying both groups and their labels. Generic
address parsers fail to recognize the generalities and peculiarities
of the WoS affiliation strings. As shown in Figure 3, the following
general steps are applied:

(1) Obtain components by splitting string on commas
(2) Identify standard address components (city, postcode, street,

country) by regular expressions, comparison with WoS city/
country fields as well as look-up in geonames.org [5]

(3) Classify remaining components by keyword occurrence
(4) Detect phrases based on component-specific cooccurrence

statistics and use the four most specific terms/phrases
After removing meaningless parts, the central method is a keyword
classifier for the remaining components. The latter is defined in a
separate file and uses over a hundred rules of the following kind:

Inst → institute

means upon Inst, remove Inst and use the rest as institute.

Fachhsch → polytechnic[FH ]

means upon Fachhsch, replace by FH and use as polytechnic. A hi-
erarchy of classes is also used, e.g. if both "Univ" and "Hosp" are

regular expressions

postcode street address lookup

comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 ... comp n

city country classifier

university department ... museum

phrase detection and term extraction

university terms department terms ... museum terms

Figure 3: The pipeline used to parse address strings and ob-
tain affiliation representations. Optional part grayed-out.

found in the same component, classify as hospital. In addition, we
experiment with suffix-matching as well to answer in particular for
German compounds like Krebszentrum. This shows mixed results,
for example Post fach is frequently parsed as a research area. Table
1 shows the current types/classes, their approximate hierarchy and
sample keywords. While some language and convention-specific
adoptions are probably required, most address strings obey interna-
tional standards. Even in the German subset most addresses are in
English. We note that the last point (4) in the above enumeration
is optional. Instead of representing each classified component (i.e.
institute) by up to four extracted phrases/terms, we can simply
use its (normalized) string. While this is certainly nice in terms of
presentation, it fails to deal with any kind of variation (e.g. GESIS
Leibniz Institute vs. GESIS Leibnitz Institute). In addition to term
extraction and phrase detection, additional means of normalization
(i.e. stemming or translation) could be applied. This is indeed a
major focus for future work, as in our experience, any improve-
ment in the parsing step leads to considerably less complexity in
the resulting graphs. Consider Figure 2, where the typos Eggentein
and Leopoldshafe lead to isolated representations. One of the main
contributions of our work is to offer a scalable framework that al-
lows to iteratively adopt and improve the address parser to capture
world knowledge and quickly view the consequences to the overall
disambiguation output. For example, with a few modifications to
the parser, we find that adding the reliably annotated city informa-
tion from the WoS to the representations offers useful hints for the
disambiguation of very general representations like CLI:{Univ}.

type/class lvl example type/class lvl example lvl explanation
university 0 Univ college 1 Sch

0 top levelpolytechnic 0 Fh collection 2 Bib
academy 0 Acad chair 2 Ls
agency 0 Agcy lab 2 Labor 1 below topassociation 0 Soc institute 2 Inst
company 0 Ltd division 2 Dept 2 in betweenfaculty 1 Fac site 2 Campus
clinic 1 Infirm area 2 Fach 3 bottom levelfactory 1 Werk community 3 Panel
center 1 Ctr city 4 - 4 unspecified
Table 1: Types of institution components currently used, cor-
responds to the classifier labels. Including approximate hier-
archy levels and example keywords that trigger assignment.
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Figure 4: The semilattice for L3S Center in the test data. On the right after a number of iterations of merge and discount.

4 COMPLEMENTARY MINIMAL ELEMENTS
While our directed acyclic graph (DAG) of institutional represen-
tations is highly connected and there are very large connected
components, a number of special nodes with zero in-degree stand
out. These nodes form minimal elements of overlapping semilat-
tices and optimally constitute top-level organisational units (i.e.
UNI:{Heidelberg}). The respective representations (a) are observed at
least once, (b) have no observed generalizations and (c) are licensed
by the lattice. We do not include unobserved minimal elements
in our graph. In practice, over the WoS, all major universities are
observed at least a few times in their general form and therefore
constitute a minimal element. Observed illegal minimal elements
like DIV:{Neurol} cannot be ignored, so they are separated as single-
node graphs. The union of all semilattice decompositions includes
all mentions, although some will appear in more than one of these
’meta-blocks’. Decomposing the DAG is crucial to obtain blocks
that can be independently processed while maintaining all edges.
In addition, we can expect that correct minimal elements amount
to top-level institutions and therefore have 100% Recall against
the top-level annotation. Table 2 presents legal and illegal minimal
elements used. Some of them are legal but not unambiguous. For
example UNI:{Munich} could refer to LMU or Technische Universität.
While these cases are usually the result of unsatisfying address pars-
ing, they present an interesting test-bed where top-level precision
is not 100%. Details are discussed in the results section.

lower bound carries observed % legal init P end P
Uni Heidelberg 170816 13464 7.9 • 99 96
Uni Munich 341727 13326 3.9 • 99 48
RWTH Aachen 96732 11277 11.7 • 91 95
Humboldt Uni 93762 9782 10.4 • 94 53
Univ Cli 476473 4941 1.0 • 59 4
Max Planck Inst 352246 1834 0.5 • 97 2
Neurol Div 75201 1385 1.8 ◦ 94 3
Med Div 230147 1001 0.4 ◦ 95 3
Phys Inst 360336 951 0.3 • 98 2
Theory Div 2451 701 28.6 ◦ 96 14
BMW Div 838 572 68.3 ◦ 100 98
Tech Uni 417359 397 1.0 • 99 22

Table 2: Some lower bounds with number of addresses
equally or more specific (carries), observation frequency,
their ratio (%), legality, as well as initial and final Precision.

5 LEVELS OF EQUALITY
Previously, we have described how our model can obtain and col-
lapse a hierarchy of affiliation representations. An essential remain-
ing question is how to use this hierarchy in the context of resolving
institutions. We find that this question is underspecified: While it
can be broken down to whether two pairs of affilition references are
’identical’ or ’equal’, it is unclear what constitutes this equality: Are
two different departments of the same institute equal? Is the univer-
sity equal to one of its faculty chairs? In fact, it can be expected that
the definition of equality depends on the usecase at hand. Therefore,
we aim at leaving the concrete definition of equality to the user and
offer different answers for whether two addresses are equivalent. A
single set of identifiers defining a fix partitioning is inadequate in
this context. We note that it is infeasible to output a Boolean equal-
ity value for each pair of mentions as this has quadratic complexity
and propose the following solution: For each state (iteration) of the
institution hierarchy, obtain a sparse mention:representation map-
pingR. In the strict equality case, eachmention is mapped only to its
own representation. In the most general case, a mention is mapped
to each representation in the semilattice that is more or equally gen-
eral than its own representation. In Figure 4 on the left, a mention
with the representation CTR:{Hannover,L3s} has as generalization
CTR:{L3s} at 1 level higher, while another mention represented
as UNI:{Hannover,Leibniz},CTR:{L3s,Leibniz} has the same general-
ization at ’distance’ 3. In the most general case, all addresses are
equivalent for which there is a meet or infimum in the semilattice.
Stricter senses of equality can for example be obtained by adding
only representations to R that are n levels more general than the
address representation. In Figure 4 on the left, CTR:{Hannover,L3s}
has a distance of 3 (the maximum of their distances to the infimum
CTR:{L3s}) to UNI:{Hannover,Leibniz},CTR:{L3s,Leibniz}. Moreover,
we can say that the equality of two addresses is defined by their
infimum – in the above example, the twomentions are equivalent in
that they both belong to L3s center. These equivalences are resolved
to some extend by the iterative merging of nodes. In Figure 4 on the
right, the distance between the two mentions has been reduced to
1. It is not unjustified to suspect that counting the number of edges
for a distance is not appropriate when edge weights are available.
This clearly needs to be investigated in future work, however we
currently depend on the categorical nature of distance to enable
efficient queries (see section 7). Previous work [9, 10] behind our
gold data has only considered an unrestricted top-level sense of
equality. Our work subsumes and refines this notion.
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Figure 5: The workflow of our approach to produce outputs like evaluation, visualizations or equivalence level DBs

6 EXPERIMENTAL EVALUATION
6.1 Data
In the KB project ’Efficient Retrieval of Web of Science data with
Elasticsearch’, WoS data was imported from XML documents into
an Elasticsearch index enabling efficient retrieval on 58millionWoS
documents between 1980 to 2019. There are 233, 791, 889 authors
with an average of 4 per document and 94, 592, 361 addresses with
an average of 1.6 per document. In the KB project ’Institution
Coding as a Basis for Bibliometric Indicators’ [10],WoS publications
with 6, 513, 669 German author addresses were matched to 2124
top-level institutions which we use as gold standard. We imported
all institutions and related addresses into another index.

6.2 Evaluation Measures
As explained in section 5, there are as many correct answers to insti-
tution resolution as there are interpretations of equality. However,
our gold standard expects only one such answer, namely the most
general. Consequently, the task of our evaluation is two-fold: (1)
Howwell can we match the annotation on the German subset of the
WoS and (2) what is the range of feasible and sensible configurations
for other interpretations of equality. While (1) can be quantified,
(2) can only be studied qualitatively by looking at excerpts. For (1),
we use pairwise Precision, Recall and F1: We record for each itera-
tion precision and recall of current the current node assignment as
percentage of correct returned pairs (TP) in returned pairs (P) or in
correct pairs (T), respectively. P is the number of mention pairs that
are currently contained by the same node (remember that nodes
can be merged and their mentions afterwards belong to the same
node). T is the number of mention pairs that have the same id in
our gold annotation (that is they are said to belong to the same
top-level institution). TP is the number of mention pairs that are in
the same node and have the same id.

6.3 Experimental Setup
In the following, we describe the workflow (see Figure 5) that is
applied to conduct experiments and produce the different outputs.

Preprocessing. We have loaded the WoS as well as the Biele-
feld annotation and the associated addresses into an Elasticsearch
index. We also use a geonames.org database as an additional re-
source. Not depicted are parser configurations. Next, we down-
load addresses, split them into components, classify and normal-
ize the latter (get_representations). From the output, we extract
the strings for each of the different classes like university or insti-
tute (get_column_data) to compute term frequencies and perform
phrase detection.We use these to get institution representations like

Uni:{Hannover},CTR:{L3s}. As described in section 4, it is much advis-
able to find a way to split the data into chunks for job-wise process-
ing. In theory, the institution representations could be used directly
in the disambiguate script, but in practice, we add the following
intermediate processing: On the partially ordered set of institution
representations, we apply an improved version get_min_elements
of the algorithm described in [2] for detecting min_elements, which
are stored as queries for the institutions database and can be supple-
mented with their carry and observation count for further analysis
(see Table 2). Then, we can call disambiguate for each minimal ele-
ment with the respective query and run our actual method from
previous work on the subset returned by the query.

Graph-building and iterative node-merging. Given a minimal ele-
ment, we first build the semilattice under it, like in Figures 1, 2 and
4 on the left. We note the difference between Figures 1 and 2, where
the first is used in the evaluation against the Bielefeld annotation.
It lacks the city information from the WoS and adds institution
IDs, which are visualized by a color-coded histogram for each node.
Next, we start iterations of discount and merge as described in
section 2. This leads to a gradual conflation of the semilattice: more
and more nodes share the same node/representation. As shown in
Figure 6, for each iteration, we can output (a) a DOT1 graph visual-
ization like Figures 1,2,4, (b) JSON-LD for the maximum spanning
tree of this graph, (c) a row for the evaluation results of this job and
(d) additional edges for the global iteration-specific equiDB database
(see section 5). In this work, we do not determine the best time
to stop iterative conflation. Instead, we show the development of
precision and recall over all iterations. These evaluation measures
are obtained for each minimal element and aggregated by adding
for each iteration T, P and TP over all jobs. Time is also measured
but not displayed due to server-load dependent variations.

1https://en.wikipedia.org/wiki/DOT_(graph_description_language)
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json

graph

json
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Figure 6: Output details: one subset per minimal element,
one result progress per subset, one graph+json output per
subset and iteration – and one equivalence DB per iteration
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Figure 7: Ahistogramover size-5 bins of precision in the first
and last block merging iteration as well as initial recall.

6.4 Results
Classes of minimal elements. Due to the iterative process of block

merging, precision and recall measurements are taken per iteration
and we compare not static results, but their development. With
continued collapsing, recall must increase and precision decreases.
Here, our method should gain more than it looses: recall should
increase faster than precision decreases. As our gold standard only
supports top-level institutions and we currently evaluate recall
only within jobs, minimal elements used for separating the data
have a large impact on the final result. Therefore, we compare
different classes of jobs based on their initial and final precision.
These measurements in the first and last iteration do not depend
on our block merging method, but only on address parsing and the
resulting minimal elements. As shown in Table 3, we distinguish
nine different classes of jobs, whereof three (those where precision
increases) are empty. From the remaining six, we investigate top-top,
top-bottom and bottom-bottom, as those involving medium are just
less significant versions of these. Top precision is set to be any value
> 85% and bottom precision to be < 50%. We see that counting the
number of jobs, 73% of them belong to the top-top class. However,
as depicted in Figure 7, these account for much less mention pairs
(which are counting towards evaluation) as large jobs contain more
than one top-level institution and final precision is low.

top
top
*

top
me
d

top
bo
t*

me
d t
op

me
d m

ed

me
d b
ot

bo
t t
op

bo
t m
ed

bo
t b
ot*

jobs 73% 10% 9% 0% 4% 4% 0% 0% 1%
pairs 15% 3% 61% 0% 0% 19% 0% 0% 2%
init P >.85 >.85 >.85 .5-.85 .5-.85 .5-.85 <.5 <.5 <.5
end P >.85 .5-.85 <.5 >.85 .5-.85 <.5 >.85 .5-.85 <.5
Table 3: Classes of lower bounds based on precision in initial
and final iteration of block merging – with percentage of
jobs and pairs per class. For selected classes*, see Figure 8.

Figure 8: Results over all iterations for three major classes
from Table 3 and all minimal elements.

Class-based performance observations. In Figure 8, we view aver-
age performance of all jobs as well as for the three above mentioned
classes. It can be seen that on average, block-merging is unable
to reliably identify different top-level institutions, as comparing
values for the same iteration on the x–axis, precision decreases
much more quickly than recall increases. This performance over all
jobs is dominated by the top-bottom class as it makes for 61% of all
pairs (see Table 3) and all and top-bot show a similar development.
The top-top class sees an obvious increase in recall at constant
precision. Without a more detailed hierarchical gold standard, we
cannot assess the quality of these merges. Interestingly, in the bot-
bot class, precision slightly improves before dropping, suggesting
that a number of correct merges are done first.However, there are
much less jobs of this kind, so it is unclear whether this is due to
chance. We summarize that as expected, precision decreases and
recall increases on average. F1 also increases, but this is due to pre-
cision and recall approaching each other and bears little additional
information. It seems that more or larger blocks are merged that
contain mentions of different top-level institutions than the oppo-
site is the case. This is different from our experiences with smaller
visualized examples like Figure 4. In Figure 9, we view separate
performance for two jobs of each class. The largest jobs on the left
have roughly the same performance as their class in Figure 8 – that
is if there is any improvement, it is in jobs with low initial preci-
sion. For the smaller jobs on the right, our method seems to work
better. The 95% largest top-bot minimal element INST:{Pharmacol}
sees recall increase faster than precision drops. Regarding minimal
element job separation as such, we note that most jobs contain only
one top-level institution (in Figure 7, end precision of 100% has a
relative frequency of almost 70%). This suggests a good separation
in many cases. However the problematic cases are both hard to
disambiguate towards the top-level annotation and contribute very
decisively to the overall performance due to their size.
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Figure 9: Results for two jobs – largest (left) and 95% largest (right) – from classes top-top (tt), top-bot (tb) and bot-bot (bb).

6.5 Discussion
Result interpretation. As a first error analysis, we find that the

three chosen classes can be summarized as follows: (a) top-top:
minimal element corresponds to an annotated top-level institu-
tion (e.g. UNI:{Heidelberg}), (b) top-bottom: the minimal element
is too general but its specification are mostly correctly identified
(e.g. INST:{Pharma-col}), (c) bottom-bottom: as the initial precision
is already low, some serious problems in the parsing step have
happened that have merged different addresses into the same rep-
resentation (e.g. CLI:{Med}). Under the current evaluation, top-top
does not say much about our method’s performance except that the
majority of delivered minimal elements make for good top-level
institutions; bot-bot on the other hand asks for adjustments in the
address parser, after which the few jobs of this kind should be
reevaluated. As stated before, the most interesting case is top-bot,
where multiple top-level institutions are contained in the same job
and iterative block merging has the chance to first merge within
these, before finally combining everything. It can be speculated
that the main problem is the huge size of the dominating jobs.

Towards better block-merging performance. As stated above, with
the current available gold annotation, we would like to see recall
increase faster than precision declines in the top-bot cases. As first
means for performance improvement, we need to prevent very
large jobs either by tackling underspecification with additional
information like city (cf. Figures 1, 2) or by taking the weight of
edges into account when computing the minimal elements (i.e. by
applying a threshold over edge weights). In addition, incremental
improvement of the address parser promises decisive performance
gains in downstream tasks, as this has been the case before.

Towards more concise evaluation. The evaluation presented here
still has a number of flaws that should be addressed. Currently,
recall is evaluated only within jobs / minimal elements, which as-
sumes that there are no equivalent institutions annotated across
job borders. Although this assumption is expected to be mostly
true, it constitutes an unacceptable unclear point. Therefore, we
should base our evaluation on addresses with the same top-level
annotation, combining results from different jobs. We still need to
determine a formula by which this can be done. In addition, our
method has a number of parameters like the discounting parameter
δ or by how much we reduce the block-merging threshold tb after
each iteration. These need to be tuned on held-out data or at least
more than one setting needs to be used to investigate whether there
is a significance influence of the respective parameter on perfor-
mance. Also, a number of baselines need to be compared to the
currently evaluated method, for example randomly merging blocks
or merging blocks only based on initial, unchanged edge-weights
(disabling discounting). Finally, we should find a hierarchical gold
standard (i.e. the DFGGERiT database), find a way to map its entries
to theWoS affiliation strings and evaluate the hierarchies created by
our approach against it to obtain a better estimate of our method’s
ability to recreate true institution hierarchies.
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7 AVAILABLE OUTPUT
As shown in Figure 6, we produce four different kinds of outputs: (a)
evaluation results, (b) DOT graph visualizations, (c) JSON trees and
(d) the equivalence database. While (a) and (b) are mainly used for
testing and understanding, the JSON is enriched with schema.org
types and made available for demonstration2 and the SQLITE equiv-
alence database can be used to find institution mentions related at
’distance’ x to another mentionm with the following query:

SELECT mentionIDIndex FROM generalizations WHERE level <=
x AND repIDIndex IN (SELECT repIDIndex FROM generalizations
WHERE level <= x AND mentionIDIndex =m);

8 RELATEDWORK
Impact of Institution Ambiguity. Although there are certainly

more examples of problematic uncertainties in institution identity,
a prominent case is described by van Raan [12], where technical
problems of institution resolution are listed as a reason to oppose
the popular Shanghai Ranking of universities. A solution directly
targeted to "research assessment" is presented by [7].

Resolution by Normalization. There are various works on the
normalization of affiliation addresses to group identical institutional
references. [3, 4, 8] Obviously, this does not answer the question of
how to model different institutional hierarchies.

Institution Resolution in the WoS. Our work is meant to comple-
ment in most parts the work done by Rimmert et al. [9, 10]. The
transformation step described by them can be considered parsing
an institution mention (address) into a normalized (generalized)
representation. The manual effort done in particular in [10] is used
for evaluation purposes. Work by [6] aims at combining an entity
linking and entity resolution approach to disambiguate references
to institutions in the Web of Science. In the linking task, the Biele-
feld group matches Wikidata [13] institutions with Web of Science
addresses. In the resolution task, the Fraunhofer ISI group matches
pairs of addresses. In the linking task, a number of strong assump-
tions are made – in particular “The underlying assumption of this
approach is that every institution is mentioned in theWoS addresses
at least on one occasion with a name variant appearing exactly this
way [. . . ] in wikidata”. In the following, these assumptions are re-
laxed (OR-connected exact match as well as approximate match
by Jaro-Winkler distance). Evidently, the linking approach fails as
soon as an institution is not in Wikidata. In addition to presenting
an inventory of different addresses, Wikidata entries and relations
between them, [10] suggests features worth considering – in par-
ticular mail domains of author email addresses. As noticed in [9],
hierarchy is a very important aspect in institution resolution and
reason why pairwise address matching faces difficulties. This is
noted both by the Bielefeld and the Fraunhofer ISI group.

Lattice-based Entity Resolution. Our work is based on previous
work by Backes [1], including work under submission. The relevant
aspects have already been described in detail in the introduction.

2https://search.gesis.org/InstDisambViz/

9 CONCLUSION
In this project, we have explored the use of progressive entity reso-
lution for disambiguating institutional references. The approach is
based on previous (partially unpublished) work and complements
it in the following ways: (a) application to the institution domain,
(b) usage of the blocking hierarchy to approximate true institution
hierarchy – including visualization and an extended concept of
equivalence, (c) partitioning by minimal elements and (d) tackling
computationally challenging aspects of applying the workflow to
the entire WoS. Due to the amount of work involved in handling the
above points, not all aspects could be studied exhaustively. However,
the current state of our work shows that the investigated approach
based on partial orders of limited feature sets is promising in that
it performs ER, addresses scaling issues, models the hierarchical
structure of institutions and offers (visual) accessibility.

Address parsing works generally well, especially keyword-based
type classification. So does phrase detection and term extraction
for different classes. We are satisfied with the hierarchies created
by our model, in particular with the general balance in the graphs
that allows for visualization and even offers relationships like ’all
cancer departments of the University of Cologne’. Edge weighting
and discounting seems to lead to reasonable merges if progressive
structure collapsing is applied. Regarding technical aspects, we
hope to find parallelized implementations for building the graph-
DB and extracting minimal elements. In addition, we need to find
a systematic way of dealing with or preventing oversize minimal
elements. In future work, we will compare different baselines and
hyper-parameter settings for block merging and evaluate against a
hierarchical gold standard.
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